CONNECT WITH US
Tuesday 25 November 2025
ASUS IoT AISEHS raises intelligent security standards, helping semiconductor industry move from passive to active protection
The semiconductor sector demands stringent security and cybersecurity standards; any lapse may compromise brand reputation and operational integrity. Conventional surveillance still encounters challenges, such as the inability to analyze extensive camera footage in real time, reliance on manual risk inspections, and the tendency for most incidents to be investigated retrospectively, despite the establishment of stringent management systems.From passive monitoring to proactive protectionASUS IoT's AISEHS intelligent image-detection platform employs AI technology to convert image data into actionable insights, assisting prominent Taiwanese semiconductor manufacturers in transitioning from passive security management to proactive prevention, thereby initiating a new era of intelligent security in the manufacturing sector.Delfina Shih, Product Manager of ASUS AI Solution Business Unit, stated that semiconductor facility safety management is primarily passive, with current operations dependent on post-event verification procedures. The widespread deployment of CCTV cameras at every site usually impedes the attainment of comprehensive and real-time surveillance, resulting in human fatigue-related errors. The absence of data-driven management tools makes it impossible for employees to undertake trend analysis or optimize SOPs.Secure, compliant, and seamlessly integratedThe AISEHS platform adheres to the rigorous standards and operating requirements of the semiconductor sector. AISEHS employs a multi-tiered access control system to ensure that each department can access only relevant data, hence preventing interdepartmental information breaches. Deployment architecture includes pure cloud, hybrid cloud, and pure on-premises to fulfill the security compliance requirements of various companies. Furthermore, automated deployment procedures and quick model iteration approaches ensure that system updates do not disrupt on-site operations. The platform simplifies integration with existing client's video-management system (VMS), incident management, and internal communication systems This significantly improves management efficiency by enabling the detection, reporting, and resolution of security issues within a unified environment.AI-driven detection and instant responseThe AISEHS platform provides critical detection capabilities, such as the identification of personal protective equipment (PPE), which speeds up the assessment of an employee's proper use of safety equipment. Virtual fencing detection effectively prevents unauthorized entry into risky areas, whereas hazardous behavior detection monitors high-risk operations, such as maintenance or climbing, and automatically checks compliance with safety procedures. The system also includes a real-time notification mechanism that immediately alerts relevant personnel when abnormalities are detected and provides video clips to help quickly locate and address issues. In order to facilitate management decision-making, the data dashboard presents contractor performance assessments, risk locations, and event patterns. In addition, the platform enables clients to integrate their own models to enhance applications and fully capitalize on their current AI investments, thereby facilitating the incorporation of third-party AI models.AISEHS facilitates global deployment by leveraging four important technologies to address the transnational operating needs of semiconductor businesses. Firstly, the RTSP streaming protocol facilitates the quick integration of surveillance devices from many manufacturers,  achieving real-time image acquisition and AI identification. Secondly, multi-tenant management makes it easier to construct autonomous tenants based on factory zones or companies, as it ensures unique data permissions and reduces interference. Thirdly, the AI task-scheduling method allows for the definition of detection intervals, with models activated only when necessary to maximize computational resources. Lastly, custom detection logic can run multiple AI models simultaneously, such as personnel counting and helmet detection, which improves implementation efficiency and lowers customization costs. Empowered by a software-defined surveillance approach,  firms will be able to balance centralized administration with localized flexibility in global operations, resulting in a consistent level of safety regulation.Delfina stated that a key advantage of AISEHS is the thorough use of existing infrastructure. The platform may be integrated easily into existing CCTV systems and network infrastructures, eliminating the need for rewiring or the purchase of new equipment. The installation process does not disrupt ongoing surveillance operations. Compared with traditional system overhauls that may take months, AISEHS requires only a security assessment of the existing platform, thereby shortening the deployment time to 2-3 weeks and enabling the transformation of conventional surveillance systems into AI-enhanced smart security frameworks.Proven performance and measurable gainsA semiconductor leader has reported positive outcomes one year after deploying the ASUS AISEHS platform. On-site worker self-discipline has increased significantly, resulting in an 82% reduction in risk occurrences thanks to AI-powered real-time monitoring and event retrospective capabilities. The AI electronic fencing provides automatic nighttime surveillance, resulting in an annual labor cost savings of about US$400,000 per sentry. Scheduling approaches and computational resource monitoring enabled more accurate allocation of GPU/CPU computing capability, resulting in a 83%  reduction in resource consumption. Operational efficiency has increased dramatically, with event processing time reduced from 30-60 minutes of cross-system manual confirmation to less than five minutes for confirmation and response. The AI model's accuracy exceeds 90%, while the actual operating error rate is less than 1%.Expanding toward intelligent, industry-wide protectionASUS IoT is making a concerted effort to enhance the functionality and scope of its AISEHS platform in order to align with its future objectives. New modules, including behavioral-anomaly detection and SOP execution analysis, will be incorporated in the future, transforming it from a security management system to a comprehensive intelligent platform for operational security and production stability. The platform will include an MLOps module to comply with cybersecurity and data sovereignty regulations. This module will enable customers to complete the entire lifecycle of data annotation and model training on-site, thereby accomplishing the objective of data remaining at the factory, and models autonomously upgrading.ASUS IoT has also initiated discussions with industries such as energy, metal refining, and petrochemicals to assess the potential for extended use of the technology in field applications.  Delfina noted that ASUS IoT intends to build AI as a basic technology for operational protection and risk prevention, strengthening security management mechanisms with a smart and efficient system.Credit: ASUS
Monday 24 November 2025
Leading the Liquid Cooling Revolution: Southco's Blind Mate Floating Mechanism Empowers Efficient Cooling in Data Centers
Global computing power is growing aggressively and pushing high-density chip power consumption. As this power density increases, traditional air cooling is reaching its physical limits, and once-fringe liquid cooling technology, boasting thermal efficiency hundreds of times greater than air cooling, is rapidly becoming core infrastructure.Driven by global sustainability targets and the need for high-performance, energy-efficient infrastructures, new large data centers must achieve their targeted PUE values, accelerating the industry towards large-scale liquid cooling. However, reliability issues stemming from insufficient mechanical tolerances at the connection points of liquid cooling systems are becoming a critical bottleneck for energy efficiency upgrades and stable operation. Southco recognizes the severity of this challenge and is committed to providing breakthrough solutions.Minor Deviations, Major CostsDuring the large-scale deployment of liquid cooling technology, the reliability of connection interfaces is vital. According to key data from the Open Compute Project (OCP) "Rack-Mounted Manifold Requirements and Verification Guidelines," a mere 1mm increase in mechanical deviation at liquid cooling interfaces can significantly raise system flow resistance by 15%, leading to a 7% increase in pump energy consumption!This is no trivial amount; in a hyperscale data center with thousands of interfaces, it translates to millions of kilowatt-hours of additional energy consumption and substantial operational costs each year. More concerning is that traditional rigid connection solutions typically offer only ±0.5mm of static tolerance, which proves inadequate in complex real-world environments like these:1. Accumulation of Multi-Dimensional Installation Deviations: In mixed deployment scenarios of widely used EIA-310-D standard racks and advanced ORV3 open architectures, rack installation tolerances can accumulate up to ±3.2mm, far exceeding the limits of traditional solutions.2. Dynamic Vibration Impacts: In ISTA 3-E vibration tests simulating real transportation and operating environments, interface displacement often exceeds 2.8mm, posing significant risks of leaks or connection failures.3. Material Thermal Expansion Effects: Under a typical temperature change of 55°C, copper alloy manifolds can expand approximately 1.2mm per meter, continuously challenging fixed interfaces.These dynamic, multi-dimensional deviations underline the urgent need for an intelligent, reliable sealing connection solution to ensure the long-term, efficient, and safe operation of liquid cooling systems.Blind Mate Quick Disconnect: A Connection for a Dynamic WorldAs a century-old expert in precision engineering, Southco confronts this challenge head-on with the launch of the revolutionary new "Blind Mate Floating Mechanism" liquid cooling connection solution. This innovation is not just a new product; it is a systematic response to profound insight into industry pain points.Current Status and Trends of Blind Mate Floating TechnologyLiquid cooling technology is rapidly gaining traction in high-performance computing (HPC), AI training clusters, and hyperscale data centers. Blind mate technology allows devices to connect without precise visual alignment, making it a core interface solution for rapid deployment and efficient maintenance in liquid cooling systems (especially cold plate systems). The development trends are clear:1. Higher Tolerance Capacity: Adapting to more complex rack environments and dynamic changes is essential.2. Increased Reliability: Zero leakage, long lifespan, and resistance to extreme conditions are basic requirements.3. Intelligent Integration: Integrating sensors for flow, temperature, pressure, etc., for real-time monitoring and predictive maintenance is a future direction.4. Standardization and Compatibility: Supporting OCP ORV3 and other open standards for seamless integration across platforms and manufacturers.Standard ISO 11926-1 threaded interface design, compatible with OCP UQD/UQDB connectors, and custom designs are available.5. Lightweight and Compact Design: Meeting the demands of higher density deployments.Southco's Blind Mate Floating Mechanism exemplifies innovative design centered around these core trends.Advantages Over Traditional SolutionsCompared to traditional fixed or simple floating heat transfer connection solutions, Southco's "Blind Mate Floating Mechanism" offers a qualitative leap with advantages evident across multiple dimensions.1. Three-Dimensional Dynamic Tolerance Control: Southco’s innovative design features a groundbreaking three-dimensional dynamic compensation mechanism: ±4mm of floating tolerance in the radial direction (2° tilt compensation) and 6mm of displacement absorption capacity in the axial direction. This far exceeds common static tolerances in the industry, effectively absorbing and adapting to all previously mentioned installation tolerances, vibration displacements, and thermal expansion deformations.2. Self-Centering Mechanism: When the liquid-cooled blind-plug connector is unplugged, the floating structure automatically resets to the center position, ensuring sufficient floating space for plugging and unplugging operations, fully meeting the strict tolerance requirements of OCP and ORV3 standards.3. Outstanding Sealing Performance for Long-Term Operation: Products endure rigorous ASME B31.3 standard 300psig burst pressure tests, ensuring over 10 years of service life, providing long-term stability for data centers, an achievement traditional solutions cannot match.4. Efficient Maintenance and Significant Cost Reduction: Featuring the Universal Quick Disconnect Blind (UQDB) interface, the design enables genuine "blind operations," allowing server maintenance without precise alignment or specialized tools. Quick disconnect capabilities make server replacement or upgrades as convenient as "hot plugging," reducing downtime and related losses by over 90%.Blind Mate Floating Mechanism. Credit: SouthcoThe Necessity of Blind Mate Floating MechanismIn AI computing clusters and next-generation data centers, adopting advanced connection solutions like Southco's "Blind Mate Floating Mechanism" is no longer optional, but essential.1. Key to Overcoming Cooling Bottlenecks: High power density is an inevitable trend; traditional cooling and rigid connections can no longer meet the demand. The Blind Mate Floating Mechanism is foundational for unleashing the full potential of liquid cooling and ensuring efficient, stable operation of cooling systems.2. Cornerstone of Business Continuity: The costs of data center downtime are immense. The rapid, reliable thermal maintenance supported by the Blind Mate Floating Mechanism is vital for ensuring uninterrupted operation of critical business activities 24/7.3. Core to Achieving Green and Low-Carbon Goals: Minor deviations in connectors leading to increased flow resistance can significantly elevate pump energy consumption. Its high-tolerance, low-flow resistance design directly contributes to lowering data center PUE values, making it an important element in energy conservation and emissions reduction goals.4. Flexibility for Future Expansion and Upgrading: Modular and standardized design enables data centers to expand capacity and upgrade equipment more flexibly, easily accommodating future increases in computing power demand and technological iterations.Continuous Innovation, Intelligent Cooling AheadAccording to the "Open Rack V3" white paper, liquid cooling penetration in hyperscale data centers is expected to exceed 40% by 2025. Southco continues to invest in R&D to iterate floating mechanism technology:1. Exploring lightweight high-performance materials (like PPSU thermoplastic) to reduce weight while maintaining strength.2. Advancing intelligent sensor integration for real-time monitoring of key parameters like flow and temperature, providing data for predictive maintenance and energy efficiency optimization.3. Deepening ecosystem collaboration and standardization to promote liquid cooling interfaces in higher density, lower TCO, and broader applications.As liquid cooling technology transitions from optional to essential, Southco's "Blind Mate" represents a precision engineering product innovation, and a profound understanding of cooling challenges in the data center industry. By integrating over a century of precision mechanical design expertise with innovative three-dimensional dynamic tolerance control technology, Southco strives to help global data centers break through cooling bottlenecks, building a more efficient, reliable, and greener foundation for computing power, empowering infinite possibilities in the digital age.For more information, please click here for more details.